Quality assurance in crowdsourcing markets has appeared to be an acute problem over the last years. We propose a quality control method inspired by Statistical Process Control (SPC), commonly used to control output quality in production processes and characterized by relying on time-series data. Behavioral traces of users may play a key role in evaluating the performance of work done on crowdsourcing platforms. Therefore, in our experiment we explore fifteen behavioral traces for their ability to recognize the drop in work quality. Preliminary results indicate that our method has a high potential for real-time detection and signaling a drop in work quality.
CITATION STYLE
Feldman, M., & Bernstein, A. (2014). Behavior-Based Quality Assurance in Crowdsourcing Markets. In Proceedings of the 2nd AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2014 (pp. 14–15). AAAI Press. https://doi.org/10.1609/hcomp.v2i1.13171
Mendeley helps you to discover research relevant for your work.