Basis-adaptive selection algorithm in dr-package

3Citations
Citations of this article
391Readers
Mendeley users who have this article in their library.

Abstract

Sufficient dimension reduction (SDR) turns out to be a useful dimension reduction tool in high-dimensional regression analysis. Weisberg (2002) developed the dr-package to implement the four most popular SDR methods. However, the package does not provide any clear guidelines as to which method should be used given a data. Since the four methods may provide dramatically different dimension reduction results, the selection in the dr-package is problematic for statistical practitioners. In this paper, a basis-adaptive selection algorithm is developed in order to relieve this issue. The basic idea is to select an SDR method that provides the highest correlation between the basis estimates obtained by the four classical SDR methods. A real data example and numerical studies confirm the practical usefulness of the developed algorithm.

Cite

CITATION STYLE

APA

Yoo, J. K. (2019). Basis-adaptive selection algorithm in dr-package. R Journal, 10(2), 124–132. https://doi.org/10.32614/RJ-2018-045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free