Pine bark (Pinus spp.) extract for treating chronic disorders

7Citations
Citations of this article
408Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Pine bark (Pinus spp.) extract is rich in bioflavonoids, predominantly proanthocyanidins, which are antioxidants. Commercially-available extract supplements are marketed for preventing or treating various chronic conditions associated with oxidative stress. This is an update of a previously published review. Objectives: To assess the efficacy and safety of pine bark extract supplements for treating chronic disorders. Search methods: We searched three databases and three trial registries; latest search: 30 September 2019. We contacted the manufacturers of pine bark extracts to identify additional studies and hand-searched bibliographies of included studies. Selection criteria: Randomised controlled trials (RCTs) evaluating pine bark extract supplements in adults or children with any chronic disorder. Data collection and analysis: Two authors independently assessed trial eligibility, extracted data and assessed risk of bias. Where possible, we pooled data in meta-analyses. We used GRADE to evaluate the certainty of evidence. Primary outcomes were participant- and investigator-reported clinical outcomes directly related to each disorder and all-cause mortality. We also assessed adverse events and biomarkers of oxidative stress. Main results: This review included 27 RCTs (22 parallel and five cross-over designs; 1641 participants) evaluating pine bark extract supplements across 10 chronic disorders: asthma (two studies; 86 participants); attention deficit hyperactivity disorder (ADHD) (one study; 61 participants), cardiovascular disease (CVD) and risk factors (seven studies; 338 participants), chronic venous insufficiency (CVI) (two studies; 60 participants), diabetes mellitus (DM) (six studies; 339 participants), erectile dysfunction (three studies; 277 participants), female sexual dysfunction (one study; 83 participants), osteoarthritis (three studies; 293 participants), osteopenia (one study; 44 participants) and traumatic brain injury (one study; 60 participants). Two studies exclusively recruited children; the remainder recruited adults. Trials lasted between four weeks and six months. Placebo was the control in 24 studies. Overall risk of bias was low for four, high for one and unclear for 22 studies. In adults with asthma, we do not know whether pine bark extract increases change in forced expiratory volume in one second (FEV1) % predicted/forced vital capacity (FVC) (mean difference (MD) 7.70, 95% confidence interval (CI) 3.19 to 12.21; one study; 44 participants; very low-certainty evidence), increases change in FEV1 % predicted (MD 7.00, 95% CI 0.10 to 13.90; one study; 44 participants; very low-certainty evidence), improves asthma symptoms (risk ratio (RR) 1.85, 95% CI 1.32 to 2.58; one study; 60 participants; very low-certainty evidence) or increases the number of people able to stop using albuterol inhalers (RR 6.00, 95% CI 1.97 to 18.25; one study; 60 participants; very low-certainty evidence). In children with ADHD, we do not know whether pine bark extract decreases inattention and hyperactivity assessed by parent- and teacher-rating scales (narrative synthesis; one study; 57 participants; very low-certainty evidence) or increases the change in visual-motoric coordination and concentration (MD 3.37, 95% CI 2.41 to 4.33; one study; 57 participants; very low-certainty evidence). In participants with CVD, we do not know whether pine bark extract decreases diastolic blood pressure (MD -3.00 mm Hg, 95% CI -4.51 to -1.49; one study; 61 participants; very low-certainty evidence); increases HDL cholesterol (MD 0.05 mmol/L, 95% CI -0.01 to 0.11; one study; 61 participants; very low-certainty evidence) or decreases LDL cholesterol (MD -0.03 mmol/L, 95% CI -0.05 to 0.00; one study; 61 participants; very low-certainty evidence). In participants with CVI, we do not know whether pine bark extract decreases pain scores (MD -0.59, 95% CI -1.02 to -0.16; one study; 40 participants; very low-certainty evidence), increases the disappearance of pain (RR 25.0, 95% CI 1.58 to 395.48; one study; 40 participants; very low-certainty evidence) or increases physician-judged treatment efficacy (RR 4.75, 95% CI 1.97 to 11.48; 1 study; 40 participants; very low-certainty evidence). In type 2 DM, we do not know whether pine bark extract leads to a greater reduction in fasting blood glucose (MD 1.0 mmol/L, 95% CI 0.91 to 1.09; one study; 48 participants;very low-certainty evidence) or decreases HbA1c (MD -0.90 %, 95% CI -1.78 to -0.02; 1 study; 48 participants; very low-certainty evidence). In a mixed group of participants with type 1 and type 2 DM we do not know whether pine bark extract decreases HbA1c (MD -0.20 %, 95% CI -1.83 to 1.43; one study; 67 participants; very low-certainty evidence). In men with erectile dysfunction, we do not know whether pine bark extract supplements increase International Index of Erectile Function-5 scores (not pooled; two studies; 147 participants; very low-certainty evidence). In women with sexual dysfunction, we do not know whether pine bark extract increases satisfaction as measured by the Female Sexual Function Index (MD 5.10, 95% CI 3.49 to 6.71; one study; 75 participants; very low-certainty evidence) or leads to a greater reduction of pain scores (MD 4.30, 95% CI 2.69 to 5.91; one study; 75 participants; very low-certainty evidence). In adults with osteoarthritis of the knee, we do not know whether pine bark extract decreases composite Western Ontario and McMaster Universities Osteoarthritis Index scores (MD -730.00, 95% CI -1011.95 to -448.05; one study; 37 participants; very low-certainty evidence) or the use of non-steroidal anti-inflammatory medication (MD -18.30, 95% CI -25.14 to -11.46; one study; 35 participants; very low-certainty evidence). We do not know whether pine bark extract increases bone alkaline phosphatase in post-menopausal women with osteopenia (MD 1.16 ug/L, 95% CI -2.37 to 4.69; one study; 40 participants; very low-certainty evidence). In individuals with traumatic brain injury, we do not know whether pine bark extract decreases cognitive failure scores (MD -2.24, 95% CI -11.17 to 6.69; one study; 56 participants; very low-certainty evidence) or post-concussion symptoms (MD -0.76, 95% CI -5.39 to 3.87; one study; 56 participants; very low-certainty evidence). For most comparisons, studies did not report outcomes of hospital admissions or serious adverse events. Authors' conclusions: Small sample sizes, limited numbers of RCTs per condition, variation in outcome measures, and poor reporting of the included RCTs mean no definitive conclusions regarding the efficacy or safety of pine bark extract supplements are possible.

Cite

CITATION STYLE

APA

Robertson, N. U., Schoonees, A., Brand, A., & Visser, J. (2020, September 29). Pine bark (Pinus spp.) extract for treating chronic disorders. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. https://doi.org/10.1002/14651858.CD008294.pub5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free