Phosphorylation of protein phosphatase 1 by cyclin-dependent protein kinase 5 during nerve growth factor-induced PC12 cell differentiation

45Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The transcription factor Egr-1 activates cyclin-dependent protein kinase 5 (Cdk5) during nerve growth factor (NGF)-induced differentiation of PC12 cells into neurons (Harada, T. Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459). The downstream target of Cdk5 in the Egr-1/Cdk5 pathway is not clear. In this study, we observed that phosphorylation of protein phosphatase 1 (PP1) on Thr320 is reduced in brain extracts from Egr-1-/- mice, indicating that a kinase downstream of Egr-1 phosphorylates PP1. In HEK 293 cells co-transfected with PP1 and Cdk5, Cdk5 phosphorylates PP1. In vitro, Cdk5 purified from bovine brain phosphorylates bacterially expressed recombinant PP1. In NGF-treated PC12 cells, inhibition of Cdk5 by olomoucine or silencing Cdk5 expression by small interfering RNA strategy, suppresses PP1 phosphorylation. Silencing Cdk5 expression by small interfering RNA also blocks NGF-induced neurite outgrowth. Overexpression of PP1 (wild type) promotes NGF-induced differentiation of PC12 cells, whereas that of PP1 (T320A) has no effect. Our data indicate that PP1 is a downstream target of the NGF/Egr-1/Cdk5 pathway during NGF-induced differentiation of PC12 cells and suggest that PP1 phosphorylation promotes neuronal differentiation. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Li, T., Chalifour, L. E., & Paudel, H. K. (2007). Phosphorylation of protein phosphatase 1 by cyclin-dependent protein kinase 5 during nerve growth factor-induced PC12 cell differentiation. Journal of Biological Chemistry, 282(9), 6619–6628. https://doi.org/10.1074/jbc.M606347200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free