The transcription factor Egr-1 activates cyclin-dependent protein kinase 5 (Cdk5) during nerve growth factor (NGF)-induced differentiation of PC12 cells into neurons (Harada, T. Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459). The downstream target of Cdk5 in the Egr-1/Cdk5 pathway is not clear. In this study, we observed that phosphorylation of protein phosphatase 1 (PP1) on Thr320 is reduced in brain extracts from Egr-1-/- mice, indicating that a kinase downstream of Egr-1 phosphorylates PP1. In HEK 293 cells co-transfected with PP1 and Cdk5, Cdk5 phosphorylates PP1. In vitro, Cdk5 purified from bovine brain phosphorylates bacterially expressed recombinant PP1. In NGF-treated PC12 cells, inhibition of Cdk5 by olomoucine or silencing Cdk5 expression by small interfering RNA strategy, suppresses PP1 phosphorylation. Silencing Cdk5 expression by small interfering RNA also blocks NGF-induced neurite outgrowth. Overexpression of PP1 (wild type) promotes NGF-induced differentiation of PC12 cells, whereas that of PP1 (T320A) has no effect. Our data indicate that PP1 is a downstream target of the NGF/Egr-1/Cdk5 pathway during NGF-induced differentiation of PC12 cells and suggest that PP1 phosphorylation promotes neuronal differentiation. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Li, T., Chalifour, L. E., & Paudel, H. K. (2007). Phosphorylation of protein phosphatase 1 by cyclin-dependent protein kinase 5 during nerve growth factor-induced PC12 cell differentiation. Journal of Biological Chemistry, 282(9), 6619–6628. https://doi.org/10.1074/jbc.M606347200
Mendeley helps you to discover research relevant for your work.