Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China

28Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

A factorial nitrogen (N) × phosphorus (P) addition experiment was conducted to evaluate responses of leaf nutrient resorption to increased soil N and P availability in a semiarid grassland in Keerqin Sandy Lands, China. Four plant species were selected, among which Artemisia scoparia and Chenopodium acuminatum were dominant species in the control and P-added plots, and Cannabis sativa and Phragmites communis were dominant in the N- and N + P-treated plots. Results showed that N and P resorption varied substantially among species (P < 0.01). A general trend of decrease in N resorption efficiency (NRE) and N resorption proficiency (NRP) was observed in response to increased soil N availability for all species, except P. communis only for NRE. Similarly, P resorption proficiency (PRP) decreased in response to P addition for all species, whereas P resorption efficiency (PRE) was not affected by P addition. Species responded differently in terms of PRE and PRP to N addition, whereas no changes in NRE and NRP occurred in response to P addition except P. communis for NRE. Our results suggest that increased soil nutrient availability can influence plant-mediated nutrient cycling directly by changing leaf nutrient resorption and indirectly by altering species composition in the sandy grassland.

Cite

CITATION STYLE

APA

Li, L. J., Zeng, D. H., Mao, R., & Yu, Z. Y. (2012). Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China. Plant, Soil and Environment, 58(10), 446–451. https://doi.org/10.17221/6339-pse

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free