A number of factors have been reported to affect insulin synthesis in β-cells. Although glucose is the most important regulator of insulin gene expression in pancreatic β-cells, the mechanisms whereby glucose stimulates insulin gene transcription in response to changes in glucose concentration have not been clarified yet. In this study, we examined the role of the Ca2+/calmodulin (CaM)-dependent protein kinase (CaM-K) cascade in transcriptional activation of insulin. RT-PCR, Western blotting, and immunohistochemical staining analysis revealed that CaM-K kinase-α (CaM-KKα) and CaM-KIV were localized in rat pancreatic β-cells and their cell line, INS-1. Exposure of INS-1 cells to 11.2 mmol/l glucose elicited an increase of insulin promoter activity as well as upregulation of CaM-KIV activity within 2 min after stimulation. We investigated the influence on insulin promoter activity of the constitutively active form (CaM-KIVc) or dominant-negative mutant (CaM-KIVdn) of CaM-KIV in transfected INS-1 cells. CaM-KIVc alone was sufficient, and the upstream kinase, CaM-KK, was enhanced to upregulate the insulin promoter activity in INS-1 cells. Furthermore, cotransfection of CaM-KIVdn suppressed to a significant degree the glucose-upregulated activity of the insulin promoter. Taken together, these results indicated that the CaM-KK/CaM-KIV cascade might play an important role in glucose-upregulated transcriptional activation of the insulin gene.
CITATION STYLE
Yu, X., Murao, K., Sayo, Y., Imachi, H., Cao, W. M., Ohtsuka, S., … Ishida, T. (2004). The role of calcium/calmodulin-dependent protein kinase cascade in glucose upregulation of insulin gene expression. Diabetes, 53(6), 1475–1481. https://doi.org/10.2337/diabetes.53.6.1475
Mendeley helps you to discover research relevant for your work.