Avocado byproducts are a rich source of health-promoting biomolecules. The purpose of this work is to study three groups of statistically different avocado fruit sizes (Persea americana Mill.) (small (S), medium (M), and large (L)), and their relationship with total phenolic and flavonoid contents (TPC and TFC, respectively), DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging capacity and individual phenolics, and the activities of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and polyphenol oxidase (PPO) in avocado peel extract (APE). The results indicated that TPC, TFC, and antioxidant and enzymatic activities were higher in the APE of the S group (p < 0.05). The flavonoids (flavanols and flavonols) and phenolic acids were also significatively concentrated in S group’s APE. Overall, the phenolic content was significantly lower in the L group. Positive correlations (p < 0.0001 and p < 0.05) were observed between TPC, TPF, DPPH, and enzymatic activity, and negative correlations resulted for avocado weight and volume. The outstanding phenolic content and enzymatic activity of avocado peels from low-cost avocado byproducts are ideal for biorefinery applications, thereby increasing the bioeconomy of the avocado industry.
CITATION STYLE
Trujillo-Mayol, I., Badillo-Muñoz, G., Céspedes-Acuña, C., & Alarcón-Enos, J. (2020). The relationship between fruit size and phenolic and enzymatic composition of avocado byproducts (Persea americana mill.): The importance for biorefinery applications. Horticulturae, 6(4), 1–13. https://doi.org/10.3390/horticulturae6040091
Mendeley helps you to discover research relevant for your work.