Three-dimensional modeling of hydrodynamics and salinity in the san francisco estuary: An evaluation of model accuracy, X2, and the low salinity zone

43Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

The three-dimensional UnTRIM San Francisco Bay- Delta model was applied to simulate tidal hydrodynamics and salinity in the San Francisco Estuary using an unstructured grid. Model predictions were compared to observations of water level, tidal flow, current speed, and salinity collected at 137 locations throughout the estuary. A quantitative approach based on multiple model assessment metrics was used to evaluate the model accuracy for each comparison. These comparisons demonstrate that the model accurately predicted water level, tidal flow, and salinity during a three year simulation period which spanned a large range of flow and salinity conditions. The model is therefore suitable for detailed investigation of circulation patterns and salinity distributions in the estuary. The model was used to investigate the location, and spatial and temporal extent of the low-salinity zone (LSZ), defined by salinity between 0.5 and 6 psu. X2, the distance up the axis of the estuary to the daily-averaged 2 psu near-bed salinity, and the spatial extent of the low-salinity zone were calculated for each day during the three-year simulation. The location, area, volume, and average depth of the lowsalinity zone varied with X2; however this variation was not monotonic and was largely controlled by bathymetric features. Predicted daily X2 values and the corresponding daily Delta outflow for each day during the threeyear simulation were used to develop a new equation to relate X2 to Delta outflow. This equation provides a conceptual improvement over previous equations by allowing the time constant for daily changes in X2 to vary with flow conditions. This improvement resulted in a smaller average error in X2 prediction than previous equations. These analyses demonstrate that a well-calibrated three-dimensional hydrodynamic model is a valuable tool for investigating the salinity distributions in the estuary and their influence on the distribution and abundance of physical habitat.

Cite

CITATION STYLE

APA

MacWilliams, M. L., Bever, A. J., Gross, E. S., Ketefian, G. S., Kimmerer, W. J., Franks, S. E., & Lackey, R. T. (2015). Three-dimensional modeling of hydrodynamics and salinity in the san francisco estuary: An evaluation of model accuracy, X2, and the low salinity zone. San Francisco Estuary and Watershed Science, 13(1), 1–37. https://doi.org/10.15447/sfews.2015v13iss1art2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free