Our analysis of human sampling decision data reveals that scientists adapt their sampling strategies to balance multiple objectives based on two key factors: the current level of information about the environment, and the availability of sampling location options with large potential rewards. While this work is only a beginning step towards the development of cognitive-compatible robotic decision algorithms, our findings show by better understanding human decision processes, robots can use extremely simple algorithms to connect experts' high-level objectives to desired sampling locations while balancing multiple objectives. Going forward, exploring how humans coordinate and prioritize multiple objectives under more sophisticated scientific exploration scenarios, such as with multiple competing hypotheses, with hypotheses regarding multiple variables, or with additional sampling objectives, would be helpful to explore. These understandings could help our robots produce explainable sampling strategies that are well-aligned with humans' high level goals, and improve humans' trust and confidence during teaming. These cognitive understandings could also allow robots to identify potential vulnerabilities in human decisions, such as biases and fatigue, and provide targeted support to enhance scientific outcomes. In addition, we expect that these cognitive insights could complement existing robotic decision methods by informing which algorithms to use, and eventually empower robots to become intelligent teammates that can truly participate in the decision-making process.
CITATION STYLE
Liu, S., Wilson, C. G., Lee, Z. I., & Qian, F. (2024). Modelling Experts’ Sampling Strategy to Balance Multiple Objectives During Scientific Explorations. In ACM/IEEE International Conference on Human-Robot Interaction (pp. 452–461). IEEE Computer Society. https://doi.org/10.1145/3610977.3635112
Mendeley helps you to discover research relevant for your work.