Biotransformation of chromium (Vi) via a reductant activity from the fungal strain purpureocillium lilacinum

4Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Industrial effluents from chromium-based products lead to chromium pollution in the environment. Several technologies have been employed for the removal of chromium (Cr) from the environment, including adsorption, ion-exchange, bioremediation, etc. In this study, we isolated a Cr (VI)-resistant fungus, Purpureocillium lilacinum, from contaminated soil, which could reduce chromium. We also characterized a reductant activity of dichromate found in the cellular fraction of the fungus: optimal pH and temperature, effect of enzymatic inhibitors and enhancers, metal ions, use of electron donors, and initial Cr (VI) and protein concentration. This study also shows possible mechanisms that could be involved in the elimination of this metal. We observed an increase in the reduction of Cr (VI) activity in the presence of NADH followed by that of formate and acetate, as electron donor. This reduction was highly inhibited by EDTA followed by NaN3 and KCN, and this activity showed the highest activity at an optimal pH of 7.0 at 37◦ C with a protein concentration of 3.62 µg/mL.

Cite

CITATION STYLE

APA

González, J. F. C., Rodríguez, I. A., Figueroa, Y. T., Oliveras, P. L., Flores, R. M., & Pérez, A. S. R. (2021). Biotransformation of chromium (Vi) via a reductant activity from the fungal strain purpureocillium lilacinum. Journal of Fungi, 7(12). https://doi.org/10.3390/jof7121022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free