Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157:H7 and meat quality

45Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Low-dose, low-penetration electron beam (E-beam) irradiation was evaluated for potential use as an antimicrobial intervention on beef carcasses during processing. The objectives of this study were (i) to assess the efficacy of E-beam irradiation to reduce concentrations of Escherichia coli O157:H7 on a large beef surface and (ii) to evaluate the effect of the treatment on the sensory properties of the product. A 1-kGy dose of E-beam radiation reduced E. coli O157:H7 inoculated onto sections of cutaneous trunci at least 4 log CFU/cm2. In assessing organoleptic impact, flank steak was used as the model muscle. Flank steaks with various levels of penetration by radiation (5, 10, 25, 50, and 75%) were evaluated. None of the flank steak sensory attributes were affected (P > 0.05) by any penetration treatment. Ground beef formulations consisting of 100, 50, 25, 10, 5, and 0% surface-irradiated beef were tested. A trained sensory panel did not detect any difference between the control (0%) and either the 5 or 10% treatments. These results suggest that if chilled carcasses were subjected to low-dose E-beam irradiation, aroma and flavor of ground beef would not be impacted. The data presented here indicate that low-dose, low-penetration E-beam irradiation has potential use as an antimicrobial intervention on beef carcasses during processing and minimally impacts the organoleptic qualities of the treated beef products.

Cite

CITATION STYLE

APA

Arthur, T. M., Wheeler, T. L., Shackelford, S. D., Bosilevac, J. M., Nou, X., & Koohmaraie, M. (2005). Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157:H7 and meat quality. Journal of Food Protection, 68(4), 666–672. https://doi.org/10.4315/0362-028X-68.4.666

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free