miR-139-5p sponged by LncRNA NEAT1 regulates liver fibrosis via targeting β-catenin/SOX9/TGF-β1 pathway

23Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Liver fibrosis is a patho-physiological process which can develop into cirrhosis, and hepatic carcinoma without intervention. Our study extensively investigated the mechanisms of lncRNA NEAT1 and miR-139-5p in regulating liver fibrosis progression. Our results demonstrated that the expression of lncRNA NEAT1 was increased and the expression of miR-139-5p was decreased in fibrotic liver tissues. LncRNA NEAT1 could sponge miR-139-5p and promoted hepatic stellate cells (HSCs) activation by directly inhibiting the expression of miR-139-5p. The co-localization of lncRNA NEAT1 with miR-139-5p was shown in the cytosols of activated HSCs. miR-139-5p upregulation could suppress the expression of β-catenin. The overexpression of β-catenin promoted HSCs activation. Moreover, we found that β-catenin could interact with SOX9 promoted HSCs activation. Our further studies demonstrated that SOX9 could bind with the TGF-β1 promoter and promoted the transcription activity of TGF-β1. The upregulation of TGF-β1 further promoted HSCs activation. In vivo study also suggested that lncRNA NEAT1 knockdown and miR-139-5p overexpression alleviated murine liver fibrosis. LncRNA NEAT1 exacerbated liver fibrosis by suppressing the expression of miR-139-5p. Collectively, our study suggested that miR-139-5p sponged by lncRNA NEAT1 regulated liver fibrosis via targeting β-catenin/SOX9/TGF-β1 Pathway.

Cite

CITATION STYLE

APA

Wang, Q., Wei, S., Li, L., Bu, Q., Zhou, H., Su, W., … Lu, L. (2021). miR-139-5p sponged by LncRNA NEAT1 regulates liver fibrosis via targeting β-catenin/SOX9/TGF-β1 pathway. Cell Death Discovery, 7(1). https://doi.org/10.1038/s41420-021-00632-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free