Synthetic biology creates new metabolic processes and improves existing ones using engineered or natural enzymes. These enzymes are often sourced from cells that differ from those in the target plant organ with respect to, e.g. redox potential, effector levels, or proteostasis machinery. Non-native enzymes may thus need to be adapted to work well in their new plant context (‘plantized’) even if their specificity and kinetics in vitro are adequate. Hence there are two distinct ways in which an enzyme destined for use in plants can require improvement: In catalytic properties such as substrate and product specificity, kcat, and KM; and in general compatibility with the milieu of cells that express the enzyme. Continuous directed evolution systems can deliver both types of improvement and are so far the most broadly effective way to deliver the second type. Accordingly, in this review we provide a short account of continuous evolution methods, emphasizing the yeast OrthoRep system because of its suitability for plant applications. We then cover the down-to-earth and increasingly urgent issues of which enzymes and enzyme properties can — or cannot — be improved in theory, and which in practice are the best to target for crop improvement, i.e. those that are realistically improvable and important enough to warrant deploying continuous directed evolution. We take horticultural crops as examples because of the opportunities they present and to sharpen the focus.
CITATION STYLE
Oliveira-Filho, E. R., Voiniciuc, C., & Hanson, A. D. (2023, October 1). Adapting enzymes to improve their functionality in plants: why and how. Biochemical Society Transactions. Portland Press Ltd. https://doi.org/10.1042/BST20230532
Mendeley helps you to discover research relevant for your work.