Background and Purpose-Determining the presence and adequacy of collateral blood flow is important in cerebrovascular disease. Therefore, we explored whether a noninvasive imaging modality, arterial spin labeling (ASL) MRI, could be used to detect the presence and intensity of collateral flow using digital subtraction angiography (DSA) and stable xenon CT cerebral blood flow as gold standards for collaterals and cerebral blood flow, respectively. Methods-ASL and DSA were obtained within 4 days of each other in 18 patients with Moyamoya disease. Two neurointerventionalists scored DSA images using a collateral grading scale in regions of interest corresponding to ASPECTS methodology. Two neuroradiologists similarly scored ASL images based on the presence of arterial transit artifact. Agreement of ASL and DSA consensus scores was determined, including kappa statistics. In 15 patients, additional quantitative xenon CT cerebral blood flow measurements were performed and compared with collateral grades. Results-The agreement between ASL and DSA consensus readings was moderate to strong, with a weighted kappa value of 0.58 (95% confidence interval, 0.52-0.64), but there was better agreement between readers for ASL compared with DSA. Sensitivity and specificity for identifying collaterals with ASL were 0.83 (95% confidence interval, 0.77-0.88) and 0.82 (95% confidence interval, 0.76-0.87), respectively. Xenon CT cerebral blood flow increased with increasing DSA and ASL collateral grade (P<0.05). Conclusions-ASL can noninvasively predict the presence and intensity of collateral flow in patients with Moyamoya disease using DSA as a gold standard. Further study of other cerebrovascular diseases, including acute ischemic stroke, is warranted. © 2011 American Heart Association. All rights reserved.
CITATION STYLE
Zaharchuk, G., Do, H. M., Marks, M. P., Rosenberg, J., Moseley, M. E., & Steinberg, G. K. (2011). Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease. Stroke, 42(9), 2485–2491. https://doi.org/10.1161/STROKEAHA.111.616466
Mendeley helps you to discover research relevant for your work.