Extracellular vesicles commonly modulate interactions among cellular communities. Recent studies demonstrate that biofilm maturation features, including matrix production, drug resistance, and dispersion, require the delivery of a core protein and carbohydrate vesicle cargo in Candida species. The function of the vesicle cargo for these advanced-phase biofilm characteristics appears to be conserved across Candida species. Mixed-species interactions in mature biofilms indicate that vesicle cargo serves a cooperative role in preserving the community. Here, we define the function of biofilm-associated vesicles for biofilm initiation both within and among five species across the Candida genus. We found similar vesicle cargo functions for several conserved proteins across species, based on the behavior of mutants. Repletion of the adhesion environment with wild-type vesicles returned the community phenotype toward reference levels in intraspecies experiments. However, cross-species vesicle complementation did not restore the wild-type biology and in fact drove the phenotype in the opposite direction for most cross-species interactions. Further study of mixed-species biofilm adhesion and exogenous wild-type vesicle administration similarly demonstrated competitive interactions. Our studies indicate that similar vesicle cargoes contribute to biofilm initiation. However, vesicles from disparate species serve an interference competitive role in mixed-Candida species scenarios. IMPORTANCE Candida species commonly form mixed-species biofilms with other Candida species and bacteria. In the established biofilm state, vesicle cargo delivers public goods to support the mature community. At biofilm initiation, however, vesicles play a negative role in cross-species interactions, presumably to allow species to gain a survival advantage. These observations and recent reports reveal that vesicle cargo has both cooperative and competitive roles among Candida species, depending on the needs of the community biofilm formation.
CITATION STYLE
Zarnowski, R., Massey, J., Mitchell, A. P., & Andes, D. (2022). Extracellular Vesicles Contribute to Mixed-Fungal Species Competition during Biofilm Initiation. In mBio (Vol. 13). American Society for Microbiology. https://doi.org/10.1128/mbio.02988-22
Mendeley helps you to discover research relevant for your work.