Voice conversion using input-to-output highway networks

25Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

This paper proposes Deep Neural Network (DNN)-based Voice Conversion (VC) using input-to-output highway networks. VC is a speech synthesis technique that converts input features into output speech parameters, and DNN-based acoustic models for VC are used to estimate the output speech parameters from the input speech parameters. Given that the input and output are often in the same domain (e.g., cepstrum) in VC, this paper proposes a VC using highway networks connected from the input to output. The acoustic models predict the weighted spectral differentials between the input and output spectral parameters. The architecture not only alleviates over-smoothing effects that degrade speech quality, but also effectively represents the characteristics of spectral parameters. The experimental results demonstrate that the proposed architecture outperforms Feed-Forward neural networks in terms of the speech quality and speaker individuality of the converted speech.

Cite

CITATION STYLE

APA

Saito, Y., Takamichi, S., & Saruwatari, H. (2017). Voice conversion using input-to-output highway networks. In IEICE Transactions on Information and Systems (Vol. E100D, pp. 1925–1928). Maruzen Co., Ltd. https://doi.org/10.1587/transinf.2017EDL8034

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free