The global proliferation of marine artificial habitats is rapidly altering the physical structure of coastlines, with knock-on effects on physical, chemical, and ecological processes at seascape scales. Ecological consequences of maritime sprawl associated with aquaculture are poorly understood, despite the fact that these suspended structures are particularly prone to biofouling, which can affect the industry and seascape around it. We characterised seascape-scale spatial and temporal distribution patterns of 10 biofouling taxa in relation to the presence and distance to Perna canaliculus mussel farms in New Zealand's largest aquaculture region. Seven of 10 taxa had significantly higher cover on farms than in natural habitats throughout the region. The cover of 4 of those 7 taxa, including the high-profile pests Mytilus galloprovincialis and Undaria pinnatifida, exponentially decreased with distance from the nearest farm, while some taxa were absent from natural habitats (e.g. the ascidian Ciona robusta). In contrast, several opportunistic macroalgal species, such as Cladophora ruchingeri and Pylaiella littoralis, had colonised extensive areas of natural habitat. Our results suggest that biofouling is a persistent issue on mussel farms and that farm structures may act as reservoirs or 'stepping stones' for the dispersal of potential marine pests. These distributional and dispersal patterns can inform integrated pest management efforts focusing on spatial management strategies, such as 'firebreaks' in farm connectivity, avoidance of pest hotspots, and farm fallowing.
CITATION STYLE
Atalah, J., Fletcher, L. M., Davidson, I. C., South, P. M., & Forrest, B. M. (2020). Artificial habitat and biofouling species distributions in an aquaculture seascape. Aquaculture Environment Interactions, 12. https://doi.org/10.3354/AEI00380
Mendeley helps you to discover research relevant for your work.