Skip to main content

On-line learning of parametric mixture models for light transport simulation

84Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Monte Carlo techniques for light transport simulation rely on importance sampling when constructing light transport paths. Previous work has shown that suitable sampling distributions can be recovered from particles distributed in the scene prior to rendering. We propose to represent the distributions by a parametric mixture model trained in an on-line (i.e. progressive) manner from a potentially infinite stream of particles. This enables recovering good sampling distributions in scenes with complex lighting, where the necessary number of particles may exceed available memory. Using these distributions for sampling scattering directions and light emission significantly improves the performance of state-of-the-art light transport simulation algorithms when dealing with complex lighting. Copyright © ACM.

Cite

CITATION STYLE

APA

Vorba, J., Karlík, O., Šik, M., Ritschel, T., & Křivánek, J. (2014). On-line learning of parametric mixture models for light transport simulation. In ACM Transactions on Graphics (Vol. 33). Association for Computing Machinery. https://doi.org/10.1145/2601097.2601203

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free