The aim of this study is to check the validity of luminescence ages obtained from last glacial–interglacial Polish loess palaeosol sequences (LPSs) by several established current protocols, with respect to sound geomorphological and chronostratigraphic interpretations. We report 38 new optically stimulated luminescence (OSL) ages from fine-grained (4–11 µm) quartz separates extracted from four loess palaeosol sequences in Poland, measured in the Bayreuth Luminescence Laboratory, Germany. The investigated sections are situated in Lower Silesia in the southwest (Zapr ezyn, Trzebnica Hills, and Biały Kościół, Strzelin Hills), the Sandomierz Upland (Złota) in central Poland, and the Volhynian Upland (Tyszowce) in the east, allowing for regional comparison. From one Silesian section (Biały Kościół) 12 new post-infrared infrared stimulated luminescence (pIRIR) ages are presented in addition to the quartz ages of identical sample material. The obtained ages are compared to already published independently elaborated middle-grain (45–63 µm) and coarse-grain (90–125 µm) quartz ages and pIRIR ages from fine grains produced in the Gliwice Luminescence Laboratory (Poland). This comparison shows that in many cases the middle- and coarse-grain quartz ages underestimate the fine-grain quartz ages, but a general rule has not been able to be established so far, likely due to different geological origin of the quartz grains. Even fine-grain quartz ages ≥∼ 50 ka may be underestimated with respect to lithostratigraphic expectations. For pIRIR ages, however, no evidence for age underestimates has been found in the studied sections, but they are more easily prone to age overestimates due to unknown residual doses at deposition in a periglacial environment. Basic agreement between the luminescence-based chronologies elaborated in the two involved laboratories can be stated for the first time in contrast to other previous studies. The observed age differences are, however, critical for the accurate time bracketing of geomorphologic and pedostratigraphic features such as ice wedging, thermokarst erosion events, and interstadial soil formations and for their attribution to marine isotope stages. Alternative interpretations are discussed including possible periglacial mirroring of pre-LGM ice advances (Ristinge and Klintholm advances) in the southwestern Baltic Sea area. The uncertainty in luminescence ages from pre-Holocene loess due to fossil ice during permafrost conditions is the major systematic error source which will be addressed but at present is far from an unambiguous solution. The present study focuses on a complex of interstadial soils now labelled L1SS1 and on harsh periglacial climate afterwards and before, yielding some unexpected results for the timing of ice wedging and thermokarst processes. In order not to leave the users alone with the decision about the most credible dating, the suggested way forwards is to simultaneously apply various luminescence dating protocols including different quartz grain sizes and pIRIR from fine polymineral grains, as an honest approach to reliable time bracketing of geomorphological processes and stratigraphic events under debate. A refinement of this approach remains challenging as far as the sole reliable dating protocol is not ensured.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Zöller, L., Fischer, M., Jary, Z., Antoine, P., & Krawczyk, M. (2022). Chronostratigraphic and geomorphologic challenges of last glacial loess in Poland in the light of new luminescence ages. E and G Quaternary Science Journal, 71(1), 59–81. https://doi.org/10.5194/egqsj-71-59-2022