DNA polymerase a is the most highly scrambled gene known in stichotrichous ciliates. In its hereditary micronuclear form, it is broken into >40 pieces on two loci at least 3 kb apart. Scrambled genes must be reassembled through developmental DNA rearrangements to yield functioning macronuclear genes, but the mechanism and accuracy of this process are unknown. We describe the first analysis of DNA polymorphism in the macronuclear version of any scrambled gene. Six functional haplotypes obtained from five Eurasian strains of Stylonychia lemnae were highly polymorphic compared to Drosophila genes. Another incompletely unscrambled haplotype was interrupted by frameshift and nonsense mutations but contained more silent mutations than expected by allelic inactivation. In our sample, nucleotide diversity and recombination signals were unexpectedly high within a region encompassing the boundary of the two micronuclear loci. From this and other evidence we infer that both members of a long repeat at the ends of the loci provide alternative substrates for unscrambling in this region. Incongruent genealogies and recombination patterns were also consistent with separation of the two loci by a large genetic distance. Our results suggest that ciliate developmental DNA rearrangements may be more probabilistic and error prone than previously appreciated and constitute a potential source of macronuclear variation. From this perspective we introduce the nonsense-suppression hypothesis for the evolution of ciliate altered genetic codes. We also introduce methods and software to calculate the likelihood of hemizygosity in ciliate haplotype pe samples and to correct for multiple comparisons in sliding-window analyses of Tajima's D.
CITATION STYLE
Ardell, D. H., Lozupone, C. A., & Landweber, L. F. (2003). Polymorphism, Recombination and Alternative Unscrambling in the DNA Polymerase α Gene of the Ciliate Stylonychia lemnae (Alveolata; class Spirotrichea). Genetics, 165(4), 1761–1777. https://doi.org/10.1093/genetics/165.4.1761
Mendeley helps you to discover research relevant for your work.