The human breast cancer cell line MCF-7 carries an amplified PPM1 D/Wip-1 gene and overexpresses Wip-1 phosphatase protein. MCF-7 cells also harbor a wild-type p53 gene. We established stable isogenic lines (MCF-Sp53 clones) which exhibit decreased levels of p53 protein. We show that although the PPM1 D gene is amplified in MCF-7 cells it is still expressed in a p53-dependent manner. Stable isogenic cell lines derived from MCF-7 cells (designated MCF-clones) were also established in which Wip-1 expression is significantly decreased by a plasmid-based PPM1D antisense RNA. Decreasing Wip-1 expression sensitized MCF-clones to doxorubicin-induced apoptosis. The enhanced apoptotic response was correlated with increased phosphorylation of N-terrminal p53-Ser15 and -Ser46 and increased expression of the pro-apoptotic Bax gene at both the mRNA and protein level. The enhanced apoptotic response was blocked by Bax-siRNA knock-down suggesting that the increased response was a result of increased Bax protein expression. Moreover, reporter gene assays using the Waf-1 and Bax promoters to drive a luciferase gene revealed that luciferase activity driven by the Bax promoter was enhanced in MCF-clones while luciferase activity driven by the Waf-1 promoter was decreased relative to parental MCF-7 cells. The study reveals a novel molecular mechanism involving Wip-1 phosphatase, p53 phosphorylation and an enhanced apoptotic response mediated by transcriptional activation of the pro-apoptotic Bax gene. ©2009 Landes Bioscience.
CITATION STYLE
Kong, W., Jiang, X., & Mercer, W. E. (2009). Downregulation of Wip-1 phosphatase expression in MCF-7 breast cancer cells enhances doxorubicin-induced apoptosis through p53-mediated transcriptional activation of Bax. Cancer Biology and Therapy, 8(6), 555–563. https://doi.org/10.4161/cbt.8.6.7742
Mendeley helps you to discover research relevant for your work.