Abstract
Background. Thermal ablative techniques have gained increasing popularity in recent years as safe and effective options for patients with unresectable solid malignancies. Microwave ablation has emerged as a relatively new technique with the promise of larger and faster burns without some of the limitations of radiofrequency ablation (RFA). Here we study a new microwave ablation device in a living porcine model using gross, histologic, and radiographic analysis. Materials and methods. The size and shape of ablated lesions were assessed using six pigs in a non-survival study. Liver tissue was ablated using 2, 4, and 8 min burns, in both peripheral and central locations, with and without vascular inflow occlusion. To characterize the post-ablation appearance, three additional pigs underwent several 4 min ablations each followed by serial computed tomography (CT) imaging at 7, 14, and 28 days postoperatively. Results. The 2 and 4 min ablations resulted in lesions that were similar in size, 33.5 cm3 and 37.5 cm3, respectively. Ablations lasting 8 min produced lesions that were significantly larger, 92.0 cm3 on average. Proximity to hepatic vasculature and inflow occlusion did not significantly change lesion size or shape. In follow-up studies, CT imaging showed a gradual reduction in lesion volume over 28 days to 25-50% of the original volume. Discussion. Microwave ablation with a novel device results in consistently sized and shaped lesions. Importantly, we did not observe any significant heat-sink effect using this device, a major difference from RFA techniques. This system offers a viable alternative for creating fast, large ablation volumes for treatment in liver cancer.
Author supplied keywords
Cite
CITATION STYLE
Awad, M. M., Devgan, L., Kamel, I. R., Torbensen, M., & Choti, M. A. (2007). Microwave ablation in a hepatic porcine model: Correlation of CT and histopathologic findings. HPB, 9(5), 357–362. https://doi.org/10.1080/13651820701646222
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.