Components of garlic (Allium sativum) can cause disruption of microtubules, cell cycle arrest, and apoptosis in cancer cells. We show here that a water-soluble extract of garlic arrested MDA-MB-435 cancer cells in mitosis and caused apoptosis. The proapoptotic BH3-only, bcl-2 family protein Bim EL, which in healthy cells can be tightly sequestered to the microtubule-associated dynein motor complex, was modified after garlic treatment. The main effect of garlic on BimEL was a considerable increase in a phosphorylated form of the protein. This phosphorylation(s), probably partly dependent on c-jun N-terminal kinase activity, promoted mitochondrial localisation of BimEL. Furthermore, inhibition of extracellular signal-regulated kinases 1/2 increased the amount of another form of BimEL present in the mitochondrial cellular fraction. Treatment of cells with the garlic compound diallyl disulphide had similar effects on BimEL. The results indicate that the apoptotic effect of garlic and a combination of garlic and the inhibitor of extracellular signal-regulated kinases 1/2 in MDA-MB-435 cells partly is due to modifications that are necessary for translocation of the proapoptotic protein BimEL to mitochondria where it executes its proapoptotic function. © 2005 Cancer Research UK.
CITATION STYLE
Lund, T., Stokke, T., Olsen, E., & Fodstad. (2005). Garlic arrests MDA-MB-435 cancer cells in mitosis, phosphorylates the proapoptotic BH3-only protein BimEL and induces apoptosis. British Journal of Cancer, 92(9), 1773–1781. https://doi.org/10.1038/sj.bjc.6602537
Mendeley helps you to discover research relevant for your work.