Cell polarity is essential for building cell asymmetry in all eukaryotic cells. Drosophila oocyte and bristle development require the newly characterized Spn-F protein complex, which includes Spn-F, IKKε, and Javelin-like (Jvl), to establish polarity. Jvl is a novel microtubule (MT)-associated protein; however, the mechanism by which it regulates MT organization is still unknown. We found that overexpression of Jvl stabilizes MTs and that jvl is needed for stable MT arrangement at the bristle tip and organization of the dynamic MT throughout the bristle shaft. At low levels of expression in cultured cells, Jvl behaved as a microtubule plus-end tracking protein. We demonstrated that Jvl physically interacts with the highly conserved MT end-binding protein 1 (EB1) using yeast two-hybrid and GST pull-down assays. This interaction is, however, dispensable for Jvl function in oocyte and bristle development. In addition, using a MT-binding assay, we saw that Jvl-C terminus directly binds to MTs. We also revealed that oocyte developmental arrest caused by Jvl overexpression in the germline can be rescued by mutations in its partners, spn-F and ikkε, suggesting that complex formation with Spn-F and IKKε is required for Jvl function in vivo. In summary, our results show that the microtubule plus-end tracking and stabilizing activities of Jvl are central for controlling cell polarity of oocytes and bristles.
CITATION STYLE
Baskar, R., Bahkrat, A., Otani, T., Wada, H., Davidov, G., Pandey, H., … Abdu, U. (2019). The plus-tip tracking and microtubule stabilizing activities of Javelin-like regulate microtubule organization and cell polarity. FEBS Journal, 286(19), 3811–3830. https://doi.org/10.1111/febs.14944
Mendeley helps you to discover research relevant for your work.