Review summarization aims to generate a condensed summary for a review or multiple reviews. Existing review summarization systems mainly generate summary only based on review content and neglect the authors' attributes (e.g., gender, age, and occupation). In fact, when summarizing a review, users with different attributes usually pay attention to specific aspects and have their own word-using habits or writing styles. Therefore, we propose an Attribute-aware Sequence Network (ASN) to take the aforementioned users' characteristics into account, which includes three modules: an attribute encoder encodes the attribute preferences over the words; an attribute-aware review encoder adopts an attribute-based selective mechanism to select the important information of a review; and an attribute-aware summary decoder incorporates attribute embedding and attribute-specific word-using habits into word prediction. To validate our model, we collect a new dataset TripAtt, comprising 495,440 attribute-review-summary triplets with three kinds of attribute information: gender, age, and travel status. Extensive experiments show that ASN achieves state-of-the-art performance on review summarization in both auto-metric ROUGE and human evaluation.
CITATION STYLE
Li, J., Wang, X., Yin, D., & Zong, C. (2019). Attribute-aware sequence network for review summarization. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference (pp. 3000–3010). Association for Computational Linguistics. https://doi.org/10.18653/v1/d19-1297
Mendeley helps you to discover research relevant for your work.