Fibrous nanomaterials have been widely employed toward the improvement of photovoltaic devices. Their light-trapping capabilities, owing to their unique structure, provide a direct pathway for carrier transport. This paper reports the improvement of perovskite solar cell (PSC) performance by a well-dispersed TiO2-coated gold nanowire (GNW) in a TiO2 cell layer. We used an artificially designed cage-shaped protein to synthesize a TiO2-coated GNW in aqueous solution under atmospheric pressure. The artificially cage-shaped protein with gold-binding peptides and titanium-compound-biomineralizing peptides can bind GNWs and selectively deposit a thin TiO2 layer on the gold surface. The TiO2-coated GNW incorporated in the photoelectrodes of PSCs increased the external quantum efficiency within the range of 350-750 nm and decreased the internal resistance by 12%. The efficient collection of photogenerated electrons by the nanowires boosted the power conversion efficiency by 33% compared to a typical mesoporous-TiO2-nanoparticle-only electrode.
CITATION STYLE
Inoue, I., Umemura, Y., Raifuku, I., Toyoda, K., Ishikawa, Y., Ito, S., … Yamashita, I. (2017). Biotemplated Synthesis of TiO2-Coated Gold Nanowire for Perovskite Solar Cells. ACS Omega, 2(9), 5478–5485. https://doi.org/10.1021/acsomega.7b00940
Mendeley helps you to discover research relevant for your work.