Alongshore sediment bypassing as a control on river mouth morphodynamics

58Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

River mouths, shoreline locations where fluvial and coastal sediments are partitioned via erosion, trapping, and redistribution, are responsible for the ultimate sedimentary architecture of deltas and, because of their dynamic nature, also pose great management and engineering challenges. To investigate the interaction between fluvial and littoral processes at wave-dominated river mouths, we modeled their morphologic evolution using the coupled hydrodynamic and morphodynamic model Delft3D-SWAN. Model experiments replicate alongshore migration of river mouths, river mouth spit development, and eventual spit breaching, suggesting that these are emergent phenomena that can develop even under constant fluvial and wave conditions. Furthermore, we find that sediment bypassing of a river mouth develops though feedbacks between waves and river mouth morphology, resulting in either continuous bypassing pathways or episodic bar bypassing pathways. Model results demonstrate that waves refracting into the river mouth bar create a zone of low alongshore sediment transport updrift of the river mouth, which reduces sediment bypassing. Sediment bypassing, in turn, controls the river mouth migration rate and the size of the river mouth spit. As a result, an intermediate amount of river discharge maximizes river mouth migration. The fraction of alongshore sediment bypassing can be predicted from the balance between the jet and the wave momentum flux. Quantitative comparisons show a match between our modeled predictions of river mouth bypassing and migration rates observed in natural settings.

Cite

CITATION STYLE

APA

Nienhuis, J. H., Ashton, A. D., Nardin, W., Fagherazzi, S., & Giosan, L. (2016). Alongshore sediment bypassing as a control on river mouth morphodynamics. Journal of Geophysical Research: Earth Surface, 121(4), 664–683. https://doi.org/10.1002/2015JF003780

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free