Chinese yam has been used both as a food and in traditional herbal medicine. Developing more effective genetic markers in this species is necessary to assess its genetic diversity and perform cultivar identification. In this study, new chloroplast genomic resources were developed using whole chloroplast genomes from six genotypes originating from different geographical locations. The Dioscorea polystachya chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of six D. polystachya chloroplast genomes revealed 141 single nucleotide polymorphisms (SNPs). Seventy simple sequence repeats (SSRs) were found in the six genotypes, including 24 polymorphic SSRs. Forty-three common indels and five small inversions were detected. Phylogenetic analysis based on the complete chloroplast genome provided the best resolution among the genotypes. Our evaluation of chloroplast genome resources among these genotypes led us to consider the complete chloroplast genome sequence of D. polystachya as a source of reliable and valuable molecular markers for revealing biogeographical structure and the extent of genetic variation in wild populations and for identifying different cultivars.
CITATION STYLE
Cao, J., Jiang, D., Zhao, Z., Yuan, S., Zhang, Y., Zhang, T., … Huang, L. (2018). Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya). BioMed Research International, 2018. https://doi.org/10.1155/2018/6293847
Mendeley helps you to discover research relevant for your work.