The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-D-xylopyranosidase and α-L-arabinofuranosidase activities, based on pNPlinked substrates (CfXyl3A). Celf_0140 encoded a β-D-glucosidase with activity on β-1,3-and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-D-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-D-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2-and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.
CITATION STYLE
Gao, J., & Wakarchuk, W. (2014). Characterization of five β-glycoside hydrolases from Cellulomonas fimi ATCC 484. Journal of Bacteriology, 196(23), 4103–4110. https://doi.org/10.1128/JB.02194-14
Mendeley helps you to discover research relevant for your work.