Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs

229Citations
Citations of this article
212Readers
Mendeley users who have this article in their library.

Abstract

Pneumonia affects 7% of the global population, resulting in 2 million pediatric deaths every year. Chest X-ray (CXR) analysis is routinely performed to diagnose the disease. Computer-aided diagnostic (CADx) tools aim to supplement decision-making. These tools process the handcrafted and/or convolutional neural network (CNN) extracted image features for visual recognition. However, CNNs are perceived as black boxes since their performance lack explanations. This is a serious bottleneck in applications involving medical screening/diagnosis since poorly interpreted model behavior could adversely affect the clinical decision. In this study, we evaluate, visualize, and explain the performance of customized CNNs to detect pneumonia and further differentiate between bacterial and viral types in pediatric CXRs. We present a novel visualization strategy to localize the region of interest (ROI) that is considered relevant for model predictions across all the inputs that belong to an expected class. We statistically validate the models' performance toward the underlying tasks. We observe that the customized VGG16 model achieves 96.2% and 93.6% accuracy in detecting the disease and distinguishing between bacterial and viral pneumonia respectively. The model outperforms the state-of-the-art in all performance metrics and demonstrates reduced bias and improved generalization.

Cite

CITATION STYLE

APA

Rajaraman, S., Candemir, S., Kim, I., Thoma, G., & Antani, S. (2018). Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101715

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free