Isoelectric point mobility shift assay for rapid screening of charged and uncharged ligands bound to proteins

15Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Three human proteins (hTAP1, hTAP2 and hTAP3) that are related to the yeast phosphatidylinositol/phosphatidylcholine transfer protein SEC14p were recently cloned in our laboratory. These proteins contain a relatively large hydrophobic pocket, the so called CRAL-TRIO domain, which is present also in other human proteins, such as CRALBP, α-TTP and MEG2. The CRAL-TRIO domains in these proteins bind ligands such as retinaldehyde, tocopherols and polyphosphoinositides, respectively. To screen for potential hTAPs ligands, we developed a semi-quantitative isoelectric point mobility shift assay (IPMS-assay) that allows assessing the binding of potential hydrophobic ligands to proteins. Purified proteins occupied with a charged ligand migrate differently on isoelectric focusing gels when compared with free protein. Competition of bound charged ligands with uncharged ones reverses the mobility shift, so that the relative affinities of the two ligands to the protein can be estimated.

Cite

CITATION STYLE

APA

Kempná, P., Cipollone, R., Villacorta, L., Ricciarelli, R., & Zingg, J. M. (2003). Isoelectric point mobility shift assay for rapid screening of charged and uncharged ligands bound to proteins. IUBMB Life, 55(2), 103–107. https://doi.org/10.1080/1521654031000095756

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free