Numerous success use cases involving deep learning have recently started to be propagated to the Semantic Web. Approaches range from utilizing structured knowledge in the training process of neural networks to enriching such architectures with ontological reasoning mechanisms. Bridging the neural-symbolic gap by joining deep learning and Semantic Web not only holds the potential of improving performance but also of opening up new avenues of research. This editorial introduces the Semantic Web Journal special issue on Semantic Deep Learning, which brings together Semantic Web and deep learning research. After a general introduction to the topic and a brief overview of recent contributions, we continue to introduce the submissions published in this special issue.
CITATION STYLE
Gromann, D., Espinosa Anke, L., & Declerck, T. (2019). Special issue on Semantic Deep Learning. Semantic Web, 10(5), 815–822. https://doi.org/10.3233/sw-190364
Mendeley helps you to discover research relevant for your work.