Methane is a vast hydrocarbon resource around the globe that has the potential to replace petroleum as a raw material and energy source. Therefore, the catalytic conversion of methane into high value-added chemicals is significantly important for the utilization of this hydrocarbon resource. However, this is a great challenge due to the high-energy input required to overcome the reaction barrier. Herein, a highly active catalytic conversion process of methane on an iron dimer anchored on a two-dimensional (2D) C2N monolayer (Fe2@C2N) is reported. Density functional theory calculations reveal that the superior properties of Fe2@C2N can be attributed to the formation of the Fe-O-Fe intermediate with H2O2 as the O-donor molecule, which facilitates the formation of methyl radicals and promotes the conversion of methane. This finding could pave the way toward highly efficient non-precious metal catalysts for methane oxidation reactions.
CITATION STYLE
Meng, H., Han, B., Li, F., & Zhao, J. (2020). Methane conversion over C2N-supported Fe2 dimers. Catalysts, 10(9), 1–9. https://doi.org/10.3390/catal10090973
Mendeley helps you to discover research relevant for your work.