LiDAR Data Classification Based on Improved Conditional Generative Adversarial Networks

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Light detection and ranging (LiDAR) data contains the height of different objects and records the elevation information of ground objects, so it plays an important role in land classification. In recent years, deep learning has been widely used in LiDAR data classification due to its strong ability to extract features. However, deep learning methods usually need sufficient training data to achieve better classification results. In order to solve this problem, a new classification method combined conditional generative adversarial network (CGAN) with residual unit and DropBlock, is proposed here for the classification of LiDAR data, called as RDB-CGAN. CGAN expands the generated samples to training data to improve the classification performance when the training samples are relatively small. Residual unit increases the network depth of the generator to improve its generation capability and utilizes shortcut connection to transfer the input information directly to the output to solve degradation caused by increased network depth. DropBlock improved the generalization of the network by dropping a whole area with spatial information correlation so that the network can learn the remaining features. The experimental results on two different LiDAR datasets show that RDB-CGAN significantly improved the classification performance of LiDAR data compared to several state-of-the-art classification methods.

Cite

CITATION STYLE

APA

Wang, A., Xue, D., Wu, H., & Iwahori, Y. (2020). LiDAR Data Classification Based on Improved Conditional Generative Adversarial Networks. IEEE Access, 8, 209674–209686. https://doi.org/10.1109/ACCESS.2020.3039211

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free