Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum

10Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Trichoderma: is a saprophytic, soil-borne fungus with a worldwide distribution that has been extensively studied due to their capacity to synthesize secondary metabolites with antimicrobial activity, parasitize other fungi and directly interact with plant roots, inducing resistance to disease and tolerance to abiotic stresses. Fusarium wilt caused by the soil-inhabiting fungus Fusarium oxysporum is considered one of the most important diseases that affect banana cultivars. Currently, more environmentally friendly alternatives to control this disease are being proposed, these strategies include the application of low doses of synthetic fungicides and the use of biocontrol agents such as Trichoderma or Xylaria. Thus, this study aimed to evaluate under in vitro conditions the synergistic effect of the biological control agent T. reesei C2A combined with low doses of mancozeb to inhibit the mycelial growth of F. oxysporum F1. To perform the synergistic essays, 0.1 mg/mL of mancozeb was suspended in PDA plates, then plugs of T. ressei C2A were placed at the center of the Petri dishes, the plates were incubated for 7 days at 28°C. Results showed that the mycoparasitic capacity of the biocontrol strain to inhibit the mycelial growth of F. oxysporum F1 was enhanced approximately 36% compared to the control plates. Although these results are promising, future studies under greenhouse and field conditions are necessary to corroborate the effectiveness of this approach.

Cite

CITATION STYLE

APA

Gonzalez, M. F., Magdama, F., Galarza, L., Sosa, D., & Romero, C. (2020). Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Communicative and Integrative Biology, 13(1), 160–169. https://doi.org/10.1080/19420889.2020.1829267

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free