Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses

  • Villegas-Rosales P
  • Méndez-Tenorio A
  • Ortega-Soto E
  • et al.
N/ACitations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery.

Cite

CITATION STYLE

APA

Villegas-Rosales, P. M., Méndez-Tenorio, A., Ortega-Soto, E., & Barrón, B. L. (2012). Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses. Bioinformation, 8(11), 519–522. https://doi.org/10.6026/97320630008519

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free