The HIV-1 RNA genome forms dimers through base pairing of a palindromic 6-mer sequence that is exposed in the loop of the dimer initiation signal (DIS) hairpin structure (loop-loop kissing). The HIV-1 leader RNA can adopt a secondary structure conformation that is not able to dimerize because the DIS hairpin is not folded. Instead, this DIS motif is base-paired in a long distance interaction (LDI) that extends the stem of the primerbinding site domain. In this study, we show that targeting of the LDI by either antisense oligonucleotides or specific mutations can induce the conformational switch to a branched multiple hairpin (BMH) structure, and this LDI-to-BMH switch coincides with increased RNA dimerization. Another interesting finding is that the extended LDI stem can resist a certain level of destabilization, indicating that a buffer is created to prevent a premature conformational switch and early dimerization. Because the tRNA Lys3 primer for reverse transcription anneals to multiple sequence elements of the HIV-1 leader RNA, including sequences in the LDI stem, we tested whether tRNA-annealing can destabilize the LDI stem such that RNA dimerization is triggered. Using a combination of stem-destabilizing approaches, we indeed measured a small but significant effect of tRNA-annealing on the ability of the RNA template to form dimers. This observation suggests that HIV-1 RNA can act as a checkpoint to control and coordinate different leader functions through conformational switches. This in vitro result should be verified in subsequent in vivo studies with HIV-infected cells.
CITATION STYLE
Berkhout, B., Ooms, M., Beerens, N., Huthoff, H., Southern, E., & Verhoef, K. (2002). In vitro evidence that the untranslated leader of the HIV-1 genome is an RNA checkpoint that regulates multiple functions through conformational changes. Journal of Biological Chemistry, 277(22), 19967–19975. https://doi.org/10.1074/jbc.M200950200
Mendeley helps you to discover research relevant for your work.