Microtubules as platforms for probing liquid–liquid phase separation in cells – application to RNA-binding proteins

  • Maucuer A
  • Desforges B
  • Joshi V
  • et al.
N/ACitations
Citations of this article
85Readers
Mendeley users who have this article in their library.

Abstract

Liquid–liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides having critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 (also known as TARDBP) and FUS because of their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here, we developed a method to analyze the mixing and demixing of two different phases in a cellular context. The principle is the following: RNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA-binding proteins, HuR (also known as ELAVL1), G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing and demixing behavior of mRNA-binding proteins in cells. Taken together, we show that microtubules can be used as platforms to understand the mechanisms underlying liquid–liquid phase separation and their deregulation in human diseases.

Cite

CITATION STYLE

APA

Maucuer, A., Desforges, B., Joshi, V., Boca, M., Kretov, D. A., Hamon, L., … Pastré, D. (2018). Microtubules as platforms for probing liquid–liquid phase separation in cells – application to RNA-binding proteins. Journal of Cell Science, 131(11). https://doi.org/10.1242/jcs.214692

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free