Comparing multi-label classification with reinforcement learning for summarisation of time-series data

10Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present a novel approach for automatic report generation from time-series data, in the context of student feedback generation. Our proposed methodology treats content selection as a multi-label (ML) classification problem, which takes as input time-series data and outputs a set of templates, while capturing the dependencies between selected templates. We show that this method generates output closer to the feedback that lecturers actually generated, achieving 3.5% higher accuracy and 15% higher F-score than multiple simple classifiers that keep a history of selected templates. Furthermore, we compare a ML classifier with a Reinforcement Learning (RL) approach in simulation and using ratings from real student users. We show that the different methods have different benefits, with ML being more accurate for predicting what was seen in the training data, whereas RL is more exploratory and slightly preferred by the students. © 2014 Association for Computational Linguistics.

Cite

CITATION STYLE

APA

Gkatzia, D., Hastie, H., & Lemon, O. (2014). Comparing multi-label classification with reinforcement learning for summarisation of time-series data. In 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014 - Proceedings of the Conference (Vol. 1, pp. 1231–1240). Association for Computational Linguistics (ACL). https://doi.org/10.3115/v1/p14-1116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free