Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid-rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non-collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non-collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in-situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic-Early Cretaceous, and potentially Late Cretaceous-Paleocene high-pressure (HP)–low-temperature metamorphic sequences. Whole-rock trace element data and in-situ B isotopes favor serpentinization by a crust-derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid-Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back-arc basins. Subsequent compressional phases trigger short-lived subduction in the back-arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non-collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back-arc basins.
CITATION STYLE
Donoso-Tapia, D., Flores, K. E., Martin, C., Gazel, E., & Marsh, J. (2024). Exhumed Serpentinites and Their Tectonic Significance in Non-Collisional Orogens. Geochemistry, Geophysics, Geosystems, 25(2). https://doi.org/10.1029/2023GC011072
Mendeley helps you to discover research relevant for your work.