We study the thermodynamics of short-range-interacting, two-dimensional bosons constrained to the lowest Landau level. When the temperature is higher than other energy scales of the problem, the partition function reduces to a multidimensional complex integral that can be handled by classical Monte Carlo techniques. This approach takes the quantization of the lowest Landau level orbits fully into account. We observe that the partition function can be expressed in terms of a function of a single combination of thermodynamic variables, which allows us to derive exact thermodynamic relations. We determine the asymptotic behavior of this function and compute some thermodynamic observables numerically.
CITATION STYLE
Jeevanesan, B., & Moroz, S. (2020). Thermodynamics of two-dimensional bosons in the lowest Landau level. Physical Review Research, 2(3). https://doi.org/10.1103/PhysRevResearch.2.033323
Mendeley helps you to discover research relevant for your work.