Mining companies strive to increase and maintain production, while simultaneously remaining competitive in the global economy. Furthermore, they must ensure workers’ safety and maintain good safety records. The use of virtual reality (VR) facilitates the development of tools and systems for various purposes that can improve knowledge and understanding of the work environment. VR is a rapidly growing technology that uses the ever-increasing power of computing to simulate real-world and imaginary environments and situations with a high degree of realism and interaction. The availability of 3D modelling tools and simulation programming engines that work effectively with a mid-range desktop PC and standard 3D graphics card, make VR technology viable and attractive for mainstream training applications. The design, development, and implementation of interactive VR training systems is proposed as an innovative approach to augment safety training. However, in order to assess the impact of such VR training systems it is of particular importance to determine the effectiveness of the design of such systems. This article proposes an evaluation framework for this vital purpose. This framework comprises criteria to assess VR training systems, specifically relating to usability, instructional design, VR systems design, and mining industry context-specific aspects. Although the framework was developed as an evaluation tool to assess effectiveness of the design of such systems, it can equally well be used as a set of design principles to inform the design of VR training systems for mining.
CITATION STYLE
Van Wyk, E. A., & De Villiers, M. R. (2019). An evaluation framework for virtual reality safety training systems in the South African mining industry. Journal of the Southern African Institute of Mining and Metallurgy, 119(5), 427–436. https://doi.org/10.17159/2411-9717/53/2019
Mendeley helps you to discover research relevant for your work.