The incidence of fungal infections caused by the opportunistic yeast Candida albicans has increased significantly in recent years. The ability to vaccinate selected patients against the organism would be advantageous. In this paper we describe a potential anti-C. albicans vaccine consisting of heat-killed C. albicans (HK-CA) in combination with the novel mucosal adjuvant LT(R192G), a genetically detoxified form of the heat-labile toxin of enterotoxigenic Escherichia coli. Groups of male CBA/J mice were immunized intranasally on three occasions at weekly intervals with 2 x 107 HK-CA per dose, alone or in conjunction with 10 μg of LT(R192G) per dose. Two weeks following the last application of antigen, some animals were challenged intravenously (i.v.) with 104, 105, or 106 viable C. albicans to assess protection as measured by survival and/or culture. Some groups of animals were footpad tested with C. albicans mannan to assess delayed-type hypersensitivity (DTH), and all the animals were bled for antibody assays. In two independent studies, all the animals immunized with HK-CA plus LT(R192G) were able to eradicate 104 C. albicans completely, as determined by kidney culture 4 weeks after challenge. Animals immunized with HK-CA only had reduced levels of C. albicans compared to the adjuvant or saline-only control. Greatly enhanced survival was observed when mice immunized with HK- CA plus LT (R192G) were challenged with 105 live C. albicans as well. Animals immunized with HK-CA plus LT(R192G) developed a significant DH response, while those given HK-CA alone developed only marginal DH responses. High immunoglobulin G (IgG) levels to cytoplasmic antigens developed in mice immunized with HK-CA plus LT(R192G), but they were found only after i.v. challenge. Addition of adjuvant shifted the antibody isotype production in i.v.-challenged animals to a response dominated by IgG2a. Clearly, intranasal immunization with killed C. albicans in conjunction with LT(R192G) afforded significant levels of protection. This novel approach offers new possibilities for the development of an effective vaccine against candidiasis for use in humans.
CITATION STYLE
Cárdenas-Freytag, L., Cheng, E., Mayeux, P., Domer, J. E., & Clements, J. D. (1999). Effectiveness of a vaccine composed of heat-killed Candida albicans and a novel mucosal adjuvant, LT(R192G), against systemic candidiasis. Infection and Immunity, 67(2), 826–833. https://doi.org/10.1128/iai.67.2.826-833.1999
Mendeley helps you to discover research relevant for your work.