Progressive multi-level distillation learning for pruning network

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Although the classification method based on the deep neural network has achieved excellent results in classification tasks, it is difficult to apply to real-time scenarios because of high memory footprints and prohibitive inference times. Compared to unstructured pruning, structured pruning techniques can reduce the computation cost of the model runtime more effectively, but inevitably reduces the precision of the model. Traditional methods use fine tuning to restore model damage performance. However, there is still a large gap between the pruned model and the original one. In this paper, we use progressive multi-level distillation learning to compensate for the loss caused by pruning. Pre-pruning and post-pruning networks serve as the teacher and student networks. The proposed approach utilizes the complementary properties of structured pruning and knowledge distillation, which allows the pruned network to learn the intermediate and output representations of the teacher network, thus reducing the influence of the model subject to pruning. Experiments demonstrate that our approach performs better on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets with different pruning rates. For instance, GoogLeNet can achieve near lossless pruning on the CIFAR-10 dataset with 60% pruning. Moreover, this paper also proves that using the proposed distillation learning method during the pruning process achieves more significant performance gains than after completing the pruning.

Cite

CITATION STYLE

APA

Wang, R., Wan, S., Zhang, W., Zhang, C., Li, Y., Xu, S., … Rao, Y. (2023). Progressive multi-level distillation learning for pruning network. Complex and Intelligent Systems, 9(5), 5779–5791. https://doi.org/10.1007/s40747-023-01036-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free