Carbon nanotube/Chitosan hydrogel for adsorption of acid red 73 in aqueous and soil environments

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Acid red 73 is an azo dye, and its residue can pollute the environment and seriously threaten human health and life. In this study, glutaraldehyde was used as the crosslinking agent, chitosan and polyvinyl alcohol were crosslinked under appropriate conditions to obtain a chitosan hydrogel film, and carbon nanotubes were dispersed in the chitosan hydrogel film. The FTIR, XRD, BET, SEM were applied to chatacterize the structure and the morphology of the absorbent and results showed that when the mass fraction of the carbon nanotubes was 1%, the structure was a three-dimensional network with microporous, and the water absorption reached to the maximum value of 266.07% and the elongation at break reached to a maximum of 98.87%. The ability to remove acid red 73 from aqueous and soil environments was evaluated by UV. In the aqueous samples, 70 mg of the adsorbent reached a saturated adsorption capacity of 101.07 mg/g and a removal rate of 92.23% at pH = 5. The thermodynamics conformed with the Langmuir adsorption isotherm and pseudo second-order adsorption kinetic models. In the soil samples, 100 mg of the adsorbent reached an adsorption capacity of 24.73 mg/g and removal rate of 49.45%. When the pH of the soil is between 4 and 7, the removal rate and adsorption capacity do not change much; hence, the pH should be maintained between 5.2 and 6.8, which is extremely suitable for the growth of general plants. Moreover, the experimental results demonstrated that the adsorbent maintained a good removal rate of acid red 73 over six adsorption cycles. Graphical Abstract: [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Wei, J., Yan, L., Zhang, Z., Hu, B., Gui, W., & Cui, Y. (2023). Carbon nanotube/Chitosan hydrogel for adsorption of acid red 73 in aqueous and soil environments. BMC Chemistry, 17(1). https://doi.org/10.1186/s13065-023-01019-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free