Previously, we have shown that a heteroplasmic mutation in mitochondrial DNA-encoded complex I ND5 subunit gene resulted in an enhanced tumorigenesis through increased resistance to apoptosis. Here we report that the tumorigenic phenotype associated with complex I dysfunction could be reversed by introducing a yeast NADH quinone oxidoreductase (NDI1) gene. The NDI1 mediated electron transfer from NADH to Co-Q, bypassed the defective complex I and restored oxidative phosphorylation in the host cells. Alternatively, suppression of complex I activity by a specific inhibitor, rotenone or induction of oxidative stress by paraquat led to an increase in the phosphorylation of v-AKT murine thymoma viral oncogene (AKT) and enhanced the tumorigenesis. On the other hand, antioxidant treatment can ameliorate the reactive oxygen species-mediated AKT activation and reverse the tumorigenicity of complex I-deficient cells. Our results suggest that complex I defects could promote tumorigenesis through induction of oxidative stress and activation of AKT pathway. © The Author 2011. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Sharma, L. K., Fang, H., Liu, J., Vartak, R., Deng, J., & Bai, Y. (2011). Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Human Molecular Genetics, 20(23), 4605–4616. https://doi.org/10.1093/hmg/ddr395
Mendeley helps you to discover research relevant for your work.