Differences in 23S ribosomal RNA mutations between wild-type and mutant macrolide-resistant Chlamydia trachomatis isolates

11Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

The aim of the present study was to determine the in vitro susceptibility of wild-type and mutant clinical isolates of Chlamydia (C.) trachomatis strains to erythromycin, azithromycin and josamycin, and to identify the resistance-conferring 23S ribosomal (r)RNA mutations in the isolates. The wild-type resistant isolates were defined as those with minimum inhibitory concentration values above the tissue concentration of the antibiotic in the urogenital system. Furthermore, all resistant C. trachomatis isolates were exposed to sub-inhibitory concentrations of macrolides, and 13 resistant mutants were selected following serial passages. Among the 8 wild-type isolates that were resistant to erythromycin, 3 isolates had a mutation at T2611C in the 23S rRNA gene while the others did not show any 23S rRNA mutations. The selected mutant isolates showed a 4- to 16-fold reduction in in vitro sensitivities. With regard to the mutant strains, the T2611C mutation was found in 10 isolates, A2057G mutation in 6 isolates, and A2059G mutation in 1 isolate. Thus, the macrolide-resistant isolates of the wild-type strain had different mutations from those selected by exposure to sub-inhibitory concentrations of macrolides. Also, since 23S rRNA mutations were not identified in certain isolates, it was considered that other molecular mechanisms may also be responsible for the macrolide resistance of C. trachomatis.

Cite

CITATION STYLE

APA

Jiang, Y., Zhu, H., Yang, L. N., Liu, Y. J., Hou, S. P., Qi, M. L., & Liu, Q. Z. (2015). Differences in 23S ribosomal RNA mutations between wild-type and mutant macrolide-resistant Chlamydia trachomatis isolates. Experimental and Therapeutic Medicine, 10(3), 1189–1193. https://doi.org/10.3892/etm.2015.2595

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free