In this paper a new plate finite element (FE) for the analysis of composite and sandwich plates is proposed. By making use of the node-variable plate theory assumptions, the new finite element allows for a simultaneous analysis of different subregions of the problem domain with different kinematics and accuracy, in a global/local sense. In particular higher-order theories with an Equivalent-Single-Layer (ESL) approach are simultaneously used with advanced Layer-Wise (LW) models. As a consequence, the computational costs can be reduced drastically by assuming refined theories only in those zones/nodes of the structural domain where the resulting strain and stress states present a complex distribution. On the contrary, computationally cheaper, low-order kinematic assumptions can be used in the remaining parts of the plate where a localized detailed analysis is not necessary. The primary advantage of the present variable-kinematics element and related global/local approach is that no ad-hoc techniques and mathematical artifices are required to mix the fields coming from two different and kinematically incompatible adjacent elements, because the plate structural theory varies within the finite element itself. In other words, the structural theory of the plate element is a property of the FE node in this present approach, and the continuity between two adjacent elements is ensured by adopting the same kinematics at the interface nodes. According to the Unified Formulation by Carrera, the through-the-thickness unknowns are described by Taylor polynomial expansions with ESL approach and by Legendre polynomials with LW approach. Furthermore, the Mixed Interpolated Tensorial Components (MITC) method is employed to contrast the shear locking phenomenon. Several numerical investigations are carried out to validate and demonstrate the accuracy and efficiency of the present plate element, including comparison with various closed-form and FE solutions from the literature.
CITATION STYLE
Valvano, S., & Carrera, E. (2017). Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures. Facta Universitatis, Series: Mechanical Engineering, 15(1), 1–30. https://doi.org/10.22190/FUME170315001V
Mendeley helps you to discover research relevant for your work.