The demulsification of water-in-heavy crude oil emulsion with water droplet size in the microscale has drawn great attention because of their high stability and difficulty of separation. In the present work, a series of ethylene amine-based demulsifiers were prepared in one step through the interaction of pentaethylene hexamine, tetraethylene pentamine, and triethylene tetramene with glycidyl 4-nonylphenyl ether. The amphiphilic polyethyleneimine (APEI) abbreviated as DNPA-6, DNPA-5, and DNPA-4 were prepared to adjust their hydrophile-lipophile balances (HLB) to meet the requirement of the demulsification. 1HNMR, 13CNMR, and FTIR spectra were utilized to verify their chemical structures. The surface properties and zeta potential were also investigated. Demulsifier dose, separation time, and HLB values were taken into account to evaluate the demulsification efficiency of the synthesized APEI. The results suggested that the prepared demulsifiers had high ability to reduce the surface and interfacial tensions and also broke successfully water-in-Arabian heavy crude oil emulsions. The demulsification efficiency of DNPA-5 reached 100% for crude oil/water emulsion (90/10 vol %).
CITATION STYLE
Ezzat, A. O., Atta, A. M., & Al-Lohedan, H. A. (2020). One-Step Synthesis of Amphiphilic Nonylphenol Polyethyleneimine for Demulsification of Water in Heavy Crude Oil Emulsions. ACS Omega, 5(16), 9212–9223. https://doi.org/10.1021/acsomega.0c00002
Mendeley helps you to discover research relevant for your work.