Energy-efficient radio-over-fiber system for next-generation cloud radio access networks

18Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The paper proposes a novel adaptive radio-over-fiber (RoF) system for next-generation cloud radio access network (C-RAN), aiming to optimize the operation cost in terms of power consumption while maintaining required data rate. By jointly considering the nonlinear distortion from Mach-Zehnder modulator (MZM) and high power amplifier (HPA) due to high peak-to-average-power ratio (PAPR) in the electronic domain, we first provide a 2×2 multiple-input mulitple-output orthogonal frequency division multiplexing (MIMO-OFDM) baseband model on electrical SNR (ESNR) for a single RoF transmission line. To take the modulation levels into consideration, we provide the optical signal to noise ratio (OSNR) analysis that jointly considers the electrical SNR (ESNR) model and the non-linear effect of the optical transmission. This optical SNR (OSNR) analysis result is further used in the subsequent power consumption model for both the downlink and uplink of the considered RoF transmission system. Case studies via simulation and numerical experiments are conducted to verify that the proposed RoF system not only can reach the lowest power and spectrum consumptions at same time, but also consumes considerably less power than current RoF system.

Cite

CITATION STYLE

APA

Wang, B., Peng, L., & Ho, P. H. (2019). Energy-efficient radio-over-fiber system for next-generation cloud radio access networks. Eurasip Journal on Wireless Communications and Networking, 2019(1). https://doi.org/10.1186/s13638-019-1457-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free